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Research Group for Al & Machine Learning in Medicine

» We established to quickly meet the clinical
unmet needs using artificial intelligence technology and to improve the standard of care.
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Increase in data required for medical decision making relative to
human cognitive capacity

Al rules!!
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Future Al-based Neuro-oncologic Imaging and Clinical
Management Workflow

A) Brain Lesion Detection, Analysis  B) Personalized Glioma Prediction and Treatment
and Recommendation System Recommendation System
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Dynamic Assessment of Treatment Response (Follow-up Imaging)
Precision Diagnostics Precision Therapeutics

Rudie, J. D., Rauschecker, A. M, Bryan, R. N., Davatzikos, C., & Mohan, S. (2019). Emerging Applications of Artificial
Intelligence in Neuro-Oncology. Radiology, 181928.
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Brain Tumor Classification
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of ke Brain tumor _ R:“:'gﬂg]ee"f;?r':?nvgv/ Ra%':;gﬁ::::;zsg“” llah Shin*, Hwivoung Kim* et al., "Development and validation of a deep
T : : i P etal, LEV \ !
25 Database T T e T s [ Ut e e T learning-based model to distinguish glioblastoma from sumgle brain
metastasis in conventional magnetic resonance images.", American
SRS NS SxreHs Journal of Neuroradiology (2020)
© S HAIIZYEY Ol || doe  acjees PAFES | gog  gapy  SARE
E = — —— e Chaejung Park et al., “MRI features may predict molecular features of
« 9lE3} glioblastoma in isocitrate dehydrogenase wild-type lower-grade gliomas’,
« X7 SEEH NS Hy 3 3 American Journal of Neuroradiology (2020)
3} (Normalization) 1+ order NGS
T features _ Feedback | 1pH Yae Won Park et al., “Radiomics Features of Hippocampal Regions in

W Conventional and Diffusion Tensor Imagings can Differentiate Temporal
\ E_) Lobe Epilepsy Patients from Healthy Controls”, Scientific Reports (2020)

Chaejung Park, et al., “Radiomics risk score may be a potential imaging
biomarker for predicting survival in isocitrate dehydrogenase wild-type
lower-grade gliomas” European Radiology (2020)
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Yae Won Park et al., "Diffusion Tensor and Conventional Imaging
Radiomics Features to Differentiate the Epidermal Growth Factor Receptor
Mutation Status of Brain Metastases from Non-Small Cell Lung Cancer",
Neuroradiology (2020)

Sohi Bae et al., "Robust performance of deep learning for distinguishing
glioblastoma from single brain metastasis using radiomic features: Model

Radio-genomics for brain tumor - -— Finding new bio-marker development and validation", Scientific Reports (2020)
w/ machine learning For precision medicine
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Al-assisted risk stratificaion of patients (chronic hepatitis B)

« established and validated an ML-based HCC predictive model optimized for patients with
chronic hepatitis B (CHB) infections receiving antiviral therapy (AVT)

« Our new ML model performed better than models in terms of predicting the risk of HCC
development in CHB patients receiving AVT.
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unpublished data

Image-based biomarker for clinical decision support (gastric cancer)

THE LANCET
. . . IF=36.62, under review
Risk stratification

- In both training and validation cohorts, high-risk patients showed significantly lower mortality
rate than low-risk patients.

Added value of Radiomics features
High/Low Risk
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Aim2: Generative Al Model for Medicine
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Al-based image synthesis for better reading of medical imaging

subsystem A:
synthetic bone-suppressed
image generation

subsystem B:
pulmonary nodule

Chest X-ray

|

bone-suppressed
Chest X-ray

generator

pulmonary nodule-detector
for original Chest X-ray

pulmonary nodule-detector
for bone-suppressed Chest X-ray

detection
Observer Sensitivity (%o) FPPI
Observer only Observer + P-value | Observer only Observer + P-value
DLBS DLBS
Observer 1 80.4 (74/92) 92.4 (85/92) 001 0.143 (30/205) 0.059 (12/205) <.001
[72.3-88.5] [87.1-97.8] [0.098, 0.208] [0.034-0.101]
Observer 2 76.1 (70/92) 91.4 (85/92) <.001 0.165 (35/205) 0.087(18/205) .001
[66.4-83.8] [85.7-97.1] [0.116, 0.235] [0.051-0.148]
Observer 3 77.2(71/92) 91.4 (85/92) <.001 0.154 (33/205) 0.063(13/205) <.001
[68.6-85.8] [85.7-97.1] [0.109, 0.218] [0.051-0.148]
Average 77.5 92.1 <.001 0.151 0.071 <.001
[69.9-85.2] [86.3-97.3] [0.111, 0.210] [0.041-0.111]

Lee, Donghoon, et al. Physics in Medicine & Biology 64.11 (2019)
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Aim 3: Al-based tool for Biomedical Research
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OrgaExtractor: An easy-to-use deep learning-based image processing tool for organoid image analysis

tAl

Colon
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Resection ™
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__ Image
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Image acquisition

U-Net based CNN model
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Raw output
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Manual vs OrgaExtractor
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Post-process

Subculture

Binary masks

Final contour image
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Sensitivity = 83.8% Sensitivity = 83.7%
2 g
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S B
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g =2 2 2
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Time of culture

 An End-to-End algorithm to analyze organoid image
« Recognizes over »85% colon organoids
* Provides 8 pre-defined parameters per organoids.

SCIENTIFIC
REPLIRTS  IF=4.60
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R2C2: Real-time Rodent Behavior Classifier Using Color-based Body Segmentation
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1D CNN
J

Acquisition/Color Tagging

Extraction of Features

Labeling/Classifying

 An End-to-End Rodent Behavior Classifier algorithm

» Achieves AUC of 0.97 in behavior classification

* Shows expert-level human performance in distinguishing
subtle behaviors associated with Autism Spectrum Disorder.
*  GUI helps easy and fast automatic labeling of fine actions

Korea Institute of
Science and Technology
THE KIST Making New History
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Aim 4: Standardization of AI-MD and Biomedical Big Data

Al-based Medical Device
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Clinical utility

Clinical validity

Scientific validity

Technical validity

~

clinical efficacy, beyond the approval

real~world performance
clinical intended use

robustness
justification of using ML/DL technigue
(in terms of prediction performance)

Three
Pillars

proof-of-concept, feasibility
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Start .
Evaluation
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—p
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Metrics

3. Conduct
Evaluation

4. Collect and ségf:;::;e End
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Results

Step 1: Determine Evaluation Tasks
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Hierarchy of AI-MD Performance Evaluation

Clinical utility clinical efficacy, beyond the approval

o

_/

o el real-world performance
Clmlcal Valldlty clinical intended use

Y\ robustness

SCientifiC Va|idity justification of using ML/DL technigue
) (in terms of prediction performance)

~

Technical validity

proof-of-concept, feasibility

(&) YONSEL +AlLab.

Three
Pillars

. . B Park, Seong Ho, and Kyunghwa Han. "Methodologic guide for evaluating clinical performance and effect of
England et al. AJR (2019); 212:513-519 artificial intelligence technology for medical diagnosis and prediction." Radiology 286.3 (2018): 800-809.
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THE LANCET Artificial intelligence for breast cancer detection in screening
mammography in Sweden: a prospective, population-based,
paired-reader, non-inferiority study

Karin Dembrower, Alessio Crippa, Evgenia Coldn, Martin Eklund, Fredrik Strand, and the ScreenTrustCAD Trial Consortium™

& double reading
SF&=l cancer detection rate

=
HelS Y20l HHALS ot= recall rateE 4= 4+ AUSE B2

B False positive

A True positive p value for p value for

Double reading by Al plus one radiologist
non-inferiority  superiority

Outcome
Strategy Abnormal Interpretatioh, no Fancer e
. Recall after consensus discussion, no cancer *
Double reading by Al plus one radiologist . — <0-0001 0.017 Biopsy, no cancer | o
Single reading by Al i —— <0-0001 073 . .
Triple reading by two radiologists plus Al | e <0-0001 <0-0001
i Single reading by Al

]
0-85 1-00 1.20 Outcome

Relative true positive fraction (log scale) Abnormal Interpretation, no cancer -

44— —»p Recall after consensus discussion, no cancer ——

Standard strategy better Experimental strategy better Biopsy, no cancer —
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1RSI W-\\\ (eI =8l NICE approval of Al technology for radiotherapy contour
Oncology planning

Emma Wilkinson
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Comprehensive standard for AI-MD
p Standards for Health Software
Improving Quality for Regulatory Use
12 September 2022

. . Session Safety and Performance - Developing “"THE” Comprehensive Standard
® A CO m D re h e n S |Ve Sta n d a rd -tO d ea | Wlth a tota | Title Needs and Challenges - Regulator’s Perspective
: _ _ . Speaker Madoka Murakami, Ph.D. (MHLW, Japan)
life-cycle of AI-MD is need i e e
Title Needs and Challenges — Academic Perspective
Speakers IHwiyoung Kim (Yonsei University, DITTAi Pat Baird (Philips, GMTA)
Time 9.25 am to 9.35 am
. Title Better Safety and Performance Standard(s) - Panel Discussion, Moderator:
Data Labeling Cloud
sta nda rd Speakers [Madoka Murakami, Hwiyoung Kim, Pat Baird, Scott Colburn (US FDA)|
1 Time 9.35 am to 9.55 am
o —te —
. | D. EM :
Data Curation | {pes o 2 bal:k ) Post-Market evaluation
standard - T Testing standard
NEW irnage New knage Clinigal Validation
Recon Methods Labeling Methods
v 4 2. Data 1Al
o < Engineering Concepts
: | (8 ML SW asa MD (MLaMD)
raining Data < D . .
: ) ML SWin MD (MLIMD)
3. Data 4. Al
’ Science Applications -
New Machine
Learning Methods Make
Reliable AI-MD ainings)/Hypothesis Pre-Market evaluation
standard p| | New Machine Learning Al standard
il iAearta A Explanation Methods Algorithms
(‘CXF;‘G\ ]O:L“MT};/, uncertainty, /
faimess:-) Foundational Research Translational Research /
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IMDRF/DITTA Joint Workshop Agenda
Standards for Health Software
Improving Quality for Regulatory Use
12 September 2022

=
=

1

Session

Safety and Performance - Developing "THE" Comprehensive Standard

Title
Speaker
Time
Title
Speakers
Time

Title

Speakers
Time

Meeds and Challenges - Regulator's Perspective
Madoka Murakami, Ph.D. (MHLW, Japan)
9.15 am to 9.25 am

Needs and Challenges — Academic Perspective

Hwiyoung Kim (Yonsei University, DITTAY, Pat Baird (Philips, GMTA)

9.25 am to 9.35 am

Better Safety and Performance Standard(s) - Panel Discussion, Moderator:

David Wotton, TGA

Madoka Murakami, Hwiyoung Kim, Pat Baird, Scott Colburn {(US FDA)

9.35 am to 9.55 am
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IMDRF Hybrid Conference

Public events: 12-13 September

o T 2F SR A Ukt 2| Q27| 7| P Mg (e

Session Safety and Performance - Developing "THE"” Comprehensive Standard

Tite Meeds and Challenges - Regulator’'s Perspectve

Speaker Madoka Murakami, Ph.D. (MHLW, Japan)

Time 9.15 am to 9.25 am

Tide Meeds and Challenges - Industry Perspectve

Speakers Hwiyoung Kim {Yonsei University, DITTA), P3k Baird (Philips, GMTA)

Time 9.25 am to 9.35 am

Tite Better Safety and Performance Standard(s) - Panel Discussion, Moderator
David Wotton, TGA

Speakers Madoka Murakami, Hwiyoung Kim, Pat Baird, Scott Colburn (US FDA)

Time 9.35 am to 9.55 am R —

@Lm TAEEER— () Hoatrectmnd i HEZHR Y

@ YONSEL +AlLab.

220912 IMDRF/DITTA Joint Workshop

Safety and Performance - Developing “THE” comprehensive standard
Case Study: Al Medical Devices (Al-MD)

Hwiyoung Kim, PhD

Dept. of Biomedical Systems Informatics, Translational Al Lab. (TAlLab)
Center for Clinical Imaging Data Science (CCIDS)

Yonsei University College of Medicine

52«/&@»«{/-’
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Ministry of Food and
Drug Safety

ZH|o|27|7| Y2 XIEZ = (IMDRF) Al/ML WG 5 &0{(239-

7| A Et& 7| F (Good Machine Learning Practice, GMLP) 7'
— d9gael S9 N2 eI ASETIE HY

These guiding principles may be used to:

e Adopt good practices that have been
proven in other sectors;

¢ Tailor practices from other sectors so they
are applicable to medical technology and
the health care sector; and

* Create new practices specific for medical
technology and the health care sector.

Good Machine Learning Practice for Medical Device Development:

Guiding Principles

Multi-Disciplinary Expertise are Leveraged
Throughout the Total Product Life Cycle

Clinical Study Participants and Data Sets are
Representative of the Intended Population

Selected Reference Datasets are Based Upon Best
Available Methods

Focusis Placed on the Performance of the
Human-Al Team

Users are Provided Clear, Essential Information

Good Software Engineering and Security Practices are
Implemented

Training Data Sets are Independent of Test Sets
Model Design is Tailored to the Available Data and

Reflects the Intended Use of the Device

Testing Demonstrates Device Performance during
Clinically Relevant Conditions

Deployed Models are Monitored for Performance and
Re-training Risks are Managed



Hwiyoung Kim, PhD
Dept. of Biomedical Systems Informatics,

Translational Artificial Intelligence Laboratory (TAlLab),
Yonsei University College of Medicine

nykim82@yuhs.ac

YONSEI UNIVERSITY
COLLEGE OF MEDICINE
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